COMPETITION FOR YOUNG RESEARCHERS (age limit 40 years old)
AT THE URBINO UNIVERSITY
SUPPORTED BY ACRI "YOUNG INVESTIGATOR TRAINING PROGRAM 2018"

Attachment 1

Application form

The following declarations are given according to articles 46 and 47 of D.P.R. n. 445/2000.

Title: Dr.

Name and Surname: Gurpreet Singh

Date of Birth:

E-mail:

Phone number:

Home Address (residence):

Languages skills (please specify English, French or Italian):

I carry out research activities in the following areas: ☑ Non Linear Analysis ☑ Calculus of Variations ☐ Algebraic Geometry

Affiliation (University, Research Center, etc.):

Role (e.g. adjunct professor, phd fellow, etc. . . ; please specify starting date and end date):

Contact Person at the affiliated institution:

Proposed title for the conference talk (11-12 July 2019, Urbino):

Brief Abstract (max 5 lines):
Selected hosting institution (please see the list of host institutions):

1st choice:

2nd choice:

3rd choice:

4th choice:

5th choice:

Proposed visiting period:

Please fill in the following details (insert additional fields if needed)

WORK EXPERIENCE

<table>
<thead>
<tr>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Settore Ricerca e Terza Missione

Ufficio Ricerca e Relazioni Internazionali

Via Valerio, 9 - 61029 Urbino (PU)

Tel. +39 0722 305330-4403-4404

ricerca@unitur.it
Abstract
The project aims at developing new techniques in the study of Systems of Partial Differential Equations. We target coupled nonlinear equations motivated by real-life phenomena arising in Fluid Mechanics, Biology and Chemistry. The applicant developed in his PhD thesis new methods for investigating the asymptotic behavior of radial solutions corresponding to steady-state systems in viscous fluids that rely on the study of the invariant manifold and a method for the study of regularity of solutions for quasilinear elliptic systems was obtained. Also, investigated the existence of ground state solution by using variational approach. In this project we intended to embed qualitative methods into a broader range of mathematical problems inspired by applications from real life and modeled by Partial Differential Equations through nonlinear systems. Both existence and nonexistence of solutions will be considered. Our findings will be next used to devise numerical methods for a quantitative study of the systems of Partial Differential Equations.

Objectives and Methodologies:

Many physical, chemical, biological, and environmental processes are driven by coupled differential equations called "systems". One relevant example in this class are the reaction-diffusion systems: these are multi-component models involving two different mechanisms: on one hand there is diffusion, and on the other hand there are chemical, biological or sociological reactions representing instantaneous interactions, which depend on the state variables themselves and possibly also explicitly on the particles' position. The British mathematician Alan Turing suggested that the two components can react and diffuse in such a way to produce steady-state heterogeneous spatial patterns. He showed that under certain conditions on the parameter values, a steady-state could be linearly stable in the absence of diffusion but unstable in the presence of diffusion; this is the now well-known phenomenon of diffusion driven (or Turing) instability.

Research Plan:
Obtaining a priori estimates for the elliptic and parabolic systems is a first step towards a qualitative and quantitative study in the project. Deriving good a priori estimates will be useful for both qualitative and quantitative study in the project. Once a priori estimates are established, variational approach and minimization methods can be used in order to obtain the existence of the solution.

Relationship with current research:
This proposal spans over both qualitative and quantitative aspects of systems of partial differential equations that arise in mathematical models of real-life phenomena. On qualitative side, I refer to my previous work and the existence of solutions satisfying such systems. One striking point in my plan emerges from my results in "On a class of mixed Choquard-Schrödinger-Poisson systems" where I was able to obtain nonexistence of solution using a Pohozaev type identity and existence of ground state solution by using a variational approach. I intend to further expand this research in a more general setting which requires the development of new techniques. Once we have a better understanding of the qualitative features of solutions for systems of differential equations, we can next proceed to improve the existing or implement new algorithms in numerically approximating such solutions.

Submit your application and enclose, as separate files, a copy of your passport/ID card reporting personal details, and a full CV.