Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


PHYSICS
FISICA

Physics
FISICA

A.Y. Credits
2015/2016 8
Lecturer Email Office hours for students
Filippo Martelli

Assigned to the Degree Course

Giorno Orario Aula

Learning Objectives

The course is devoted to the presentation of the foundations of classical physics. Physics laws are proposed highlighting the experimental scientifiìc method that is the base for the study of nature's laws. Whenever possible connections with contemporary research are presented as well. Relevance is also given to simple problem solving.

Program

1. Introduction
1.1 Scientific method
1.2 Measurements and errors
1.3 Physical quantities and units

2 Kinematics
2.1 Average and continuous velocity and acceleration: straight uniform motion and motion with uniform acceleration.
2.2 Motion in space: tangent and centripetal acceleration.
2.3 Uniform circular motion
2.4 Combination motions

3 Principles of dynamics
3.1 Principle of relativity and of inertia principio
3.2 Inertial reference frames
3.3 Empirical derivation of the second law of dynamics
3.4 Third law of dynamics

4 Forces
4.1 Fundamental interactions
4.2 Universal gravitational law
4.3 Inertial forces
4.4 Ropes and constraints
4.5 Statical and dynamical friction
4.6 Elastic forces and harmonic oscillator
4.7 Waves: mathematical description, superposition, interference. Vibrating string. Beat.

5 Work and energy
5.1 Work
5.2 Work and kinetic energy
5.3 Potential energy eand conservative forces
5.4 Mechanical energy conservation

6 6 System dynamics
6.1 Centre of mass motion.
6.2 Conservation of momentum. Elastic collision on fixed target.
6.3 Angular momentum and torque. Angular momentum conservation.
6.4 Space and angular variables. Moment of inertia and angular motion.

7 Fluids
7.1 Fluiodostatics: Stevin's law and Archimede's principle
7.2 Dynamics of fluids: Bernoulli's theorem and consequences
7.3 Dynamics of viscous fluids: Hagen-Poiseuille's law
7.4 Surface tension: Laplace's law and capillarity

8 Thermometry and calorimetry
8.1 Definition of temperature and thermometric scales
8.2 Heat and calorimetric measurements
8.3 Thermal capacity, specific heat and latent heath
8.4 Heath propagation

9 First law of thermodynamics
9.1 Joule's experience and the first law
9.2 Internal energy
9.3 Ideal gas: first law application to the main ideal gas transformations
9.4 Kinetic model of an ideal gas

10 Second law of thermodynamics
10.1 Clausius e Kelvin's statements and their equivalence
10.2 Heat engines: efficiency and reversibility
10.3 Carnot heat engine
10.4 Carnot theorem on the efficiency of heat engines
10.5 Clausius integral and entropy
10.6 Main thermodynamical potentials

11 Electromagnetism
11.1 Coulomb force and electric field.
11.2 Capacitance. Parallel plate capacitor.
11.3 Electric current and Ohm's law. Series and parallel resistors. Power dissipation.
11.4 Lorentz force. Magnetic fields generation. Solenoids.
11.5 Faraday-Lenz law. Induction and self-induction.
11.6 Elettromagnetic waves: Maxwell's equations.

12 Optics
12.1 Electromagnetic spectrum.
12.2 Reflection and refraction: Snell's law
12.3 Thin lens equation
12.4 Focal lenght: images from a biconvex lens
12.5 Main optical instruments

Bridging Courses

Learning Achievements (Dublin Descriptors)

- The student should be able to apply the knowledge of the main physical laws to understand common natural phenomena, even when these are not directly relevant for physics but also, for example, for biology. Knowledge must be used also for problem solving.

- The student must show a proper autonomy in his knowledge, not simply recalling it by heart.

- The use of an appropriate scientific languange is required.

Teaching Material

The teaching material prepared by the lecturer in addition to recommended textbooks (such as for instance slides, lecture notes, exercises, bibliography) and communications from the lecturer specific to the course can be found inside the Moodle platform › blended.uniurb.it

Supporting Activities

10 hours of exercises addressed to problem solving


Didactics, Attendance, Course Books and Assessment

Didactics

Lectures

Attendance

A good knowledge of algebra, trigonometry and the capability of solving equations and systems of equations is required, as well as the basic differential calculus.

Course books

Slides of the lectures.

For further reading and study:

- P.R. Kesten, D.L. Tauck, Fondamenti di Fisica, Bologna, Zanichelli

or

- Giancoli, Fisica, Casa Editrice Ambrosiana
- D. Halliday, R. Resnick, J. Walker, Fondamenti di Fisica, Casa Editrice Ambrosiana

Assessment

Written examination: problem solving.

Oral examination

Additional Information for Non-Attending Students

Didactics

Lectures

Attendance

A good knowledge of algebra, trigonometry and the capability of solving equations and systems of equations is required, as well as the basic differential calculus.

Course books

Slides of the lectures.

For further reading and study:

- P.R. Kesten, D.L. Tauck, Fondamenti di Fisica, Bologna, Zanichelli

or

- Giancoli, Fisica, Casa Editrice Ambrosiana
- D. Halliday, R. Resnick, J. Walker, Fondamenti di Fisica, Casa Editrice Ambrosiana

Assessment

Written examination: problem solving.

Oral examination

Notes

« back Last update: 14/09/15

Condividi


Questo contenuto ha risposto alla tua domanda?


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Il tuo 5x1000 per sostenere le attività di ricerca

L'Università di Urbino destina tutte le risorse che deriveranno da questa iniziativa alla ricerca scientifica ed al sostegno di giovani ricercatori.

Numero Verde

800 46 24 46

Richiesta informazioni

informazioni@uniurb.it

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Performance della pagina

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2019 © Tutti i diritti sono riservati

Top