MOLECULAR BIOLOGY
BIOLOGIA MOLECOLARE
Molecular biology
BIOLOGIA MOLECOLARE
A.Y. | Credits |
---|---|
2015/2016 | 6 |
Lecturer | Office hours for students | |
---|---|---|
Antonella Amicucci |
Assigned to the Degree Course
Date | Time | Classroom / Location |
---|
Learning Objectives
The objective of the course is to provide students with the cultural tools to approach the study of the organization of genomes and molecular and cellular mechanisms underlying gene expression; during the course it will explained the theoretical concepts at the base of the most important techniques of molecular biology and their applications.
Program
From DNA to proteins. DNA as the genetic material. Chemical structure and physical structure of DNA. The discovery of the double helix structure. Alternative structures of DNA (A, B, Z) and superstructures (cruciform, supercoiled, curved DNA). RNA structure. Genetic code and protein synthesis. Deciphering, properties, and evolution of the genetic code. The components of the translational apparatus: ribosomes, mRNA, tRNA and aminoacyl synthetase. Mechanism of translation in prokaryotes and eukaryotes: initiation, elongation and termination. General regulations and specifications of the translation.
Organization and evolution of genes, chromosomes and genomes. DNA content and complexity of genetic sequences; unique and repeated sequences of DNA; coding and non-coding regions of the genome, the structure of exons/introns of genes, origin and evolution of introns, intron functions, organization and evolution of gene families; simple sequences and satellite DNA; organization and structure of chromosomes, centromeres and telomeres, histones, structure of nucleosomes and chromatin organization.
DNA replication. Semiconservative replication and progressive of DNA; replicons, replication forks and origins; unidirectional and bidirectional replicons; replicons and the replication origins of prokaryotic chromosomes; replicons and origins of eukaryotic chromosomes; topological models for DNA replication; discontinuous replication and Okazaki fragments; DNA polymerase of prokaryotes and eukaryotes; enzymatic apparatus of replication; control of replication; replication of chromatin. Prokaryotes and eukaryotes transposons. Outline of major DNA repair mechanisms.
Transcription and its regulation. RNA polymerase and prokaryotic promoters; transcription mechanism and regulation in prokaryotes; the paradigm of lactose operon. RNA polymerase and eukaryotic promoters: Pol I, Pol II and Pol III; transcription and transcription regulation in eukaryotes. Transcription factors. Termination, antitermination and attenuation of transcription. Chromatin structure and transcription: active chromatin and chromatin remodeling. DNA methylation and transcription.
RNA processing. Maturation of transcripts in prokaryotes: mRNA maturation of phage T7, and of E. coli rRNA and tRNA; autocleavage of RNA. RNA Processing in Eukaryotes; modifications of ribosomal RNA; methylation and pseudouridylation of RNA; snoRNA and snoRNP. Maturation of eukaryotic mRNAs: structure of M7G-cap and of poly (A) tail, enzymatic mechanisms of "capping" and "polyadenylation". Mechanisms of RNA splicing: introns of type I and type II; autosplicing; nuclear splicing and spliceosome; splicing of yeast tRNA. RNA editing.
The technology of recombinant DNA and molecular cloning. Molecular cloning; construction of DNA libraries; probes and screening of the libraries; expression libraries; restriction mapping; the length polymorphism of the restriction fragments (RFLP); DNA sequencing.
Learning Achievements (Dublin Descriptors)
The student must show the possession of basic knowledge about processes involving DNA as genetic material, in particular the structure of nucleic acids, the mechanisms of replication, transcription, RNA modification, and protein synthesis. The student must show an understanding of the concepts and theories provided by the course; to be able to connect the different molecular processes, using the knowledge gained, and link the molecular characteristics of a process or structure of a molecule with its. The student will acquire the skills to understand and discuss a scientific paper of high level on the topics of the course.
Teaching Material
The teaching material prepared by the lecturer in addition to recommended textbooks (such as for instance slides, lecture notes, exercises, bibliography) and communications from the lecturer specific to the course can be found inside the Moodle platform › blended.uniurb.it
Supporting Activities
Material to support teaching will be given in class
Teaching, Attendance, Course Books and Assessment
- Teaching
The course will consists in lecturers in class.
- Course books
TESTBOOKS
F. Amaldi, P. Benedetti, G. Pesole, P. Plevani. BIOLOGIA MOLECOLARE, CEA, 2011.
TEXTS OF CONSULTATION
B. Lewin, J.E. Krebs, E.S. Goldstein, S.T. Kilpatrick. IL GENE, Zanichelli, 2011.
L. A. Allison. Fondamenti di biologia molecolare, Zanichelli, 2008.
R. F. Weaver. BIOLOGIA MOLECOLARE, McGraw-Hill, 2009.
J. D. Watson , T. A. Baker, S. P. Bell, A. Gann, M. Levine, R. Losick. BIOLOGIA MOLECOLARE DEL GENE, Zanichelli, 2009.
J. D. Watson, A.A. Caudy, R.M. Myers, J.A. Witkowski. DNA RICOMBINANTE, Zanichelli, 2009.
- Assessment
The final evaluation of the course will be done through a written test and an oral exam. The written test consists of 6 multiple choice questions and four open-ended questions. The multiple choice questions are worth a total of 4 points, while the open questions allow you to get the maximum 6 points. The final grade is calculated as the sum of points obtained in written with those obtained in the oral test. During the course will be offered self-assessment tests to students attending. The final evaluation will be carried out on the preparedness of the student, on his presentation and discussion skills. Moreover, it will also take account of participation in class.
- Disability and Specific Learning Disorders (SLD)
Students who have registered their disability certification or SLD certification with the Inclusion and Right to Study Office can request to use conceptual maps (for keywords) during exams.
To this end, it is necessary to send the maps, two weeks before the exam date, to the course instructor, who will verify their compliance with the university guidelines and may request modifications.
Additional Information for Non-Attending Students
- Teaching
The course will consists in lecturers in class.
- Course books
TESTBOOKS
F. Amaldi, P. Benedetti, G. Pesole, P. Plevani. BIOLOGIA MOLECOLARE, CEA, 2011.TEXTS OF CONSULTATION
B. Lewin, J.E. Krebs, E.S. Goldstein, S.T. Kilpatrick. IL GENE, Zanichelli, 2011.
L. A. Allison. Fondamenti di biologia molecolare, Zanichelli, 2008.
R. F. Weaver. BIOLOGIA MOLECOLARE, McGraw-Hill, 2009.
J. D. Watson , T. A. Baker, S. P. Bell, A. Gann, M. Levine, R. Losick. BIOLOGIA MOLECOLARE DEL GENE, Zanichelli, 2009.
J. D. Watson, A.A. Caudy, R.M. Myers, J.A. Witkowski. DNA RICOMBINANTE, Zanichelli, 2009.
- Assessment
The final evaluation of the course will be done through a written test and an oral exam. During the course will be offered self-assessment tests to students attending. The final evaluation will be carried out on the preparedness of the student, on his presentation and discussion skills. Moreover, it will also take account of participation in class.
- Disability and Specific Learning Disorders (SLD)
Students who have registered their disability certification or SLD certification with the Inclusion and Right to Study Office can request to use conceptual maps (for keywords) during exams.
To this end, it is necessary to send the maps, two weeks before the exam date, to the course instructor, who will verify their compliance with the university guidelines and may request modifications.
« back | Last update: 14/09/2015 |