Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


PSYCHOMETRICS
PSICOMETRIA

PSYCHOMETRICS
PSICOMETRIA

A.Y. Credits
2016/2017 8
Lecturer Email Office hours for students
Manuela Berlingeri from september 2016 to february 2017: by appointment - from february 2017: wednesday 14:00 - 15:00

Assigned to the Degree Course

Psychology - Sciences and Techniques (L-24)
Curriculum: PERCORSO COMUNE
Date Time Classroom / Location

Learning Objectives

Acquisition of the theoretical knowledge and of the practical skills at the basis of the main data analysis techniques . At the end of the course , the student will be able to recognize which statistical approach has to be adopted in specific contexts and to comment on the results of these analyses .

Program

The program is divided into 13 topics : 1 . introduction and rkey concepts : measurement scales , indicators of central tendency , variability indicators , graphical methods for the exploration of data (lecture 1-2) 2 . simple regression (lecture 3-4). 3 multiple regression (lecture 5-6). 4. Comparing Means : t - test  5 (lecture 7). Comparing Means : one-way ANOVA (lecture 7) 6. General linear model: factorial ANOVA between- subjects (lecture 8) 7 . Post- Hoc Comparisons: the problem of multiple comparisons and of statistical power (lecture 9). 8 General Linear Model: Model Assumptions (lecture 10) 9. Nonparametric tests (lecture 11) 10 . Factor analysis 11 (lecture 12-13-14). Subject assessment: assessment tools , reliability and validity (lecture 15-16) 12 . Statistics applied to neuropsychology and psicodiagnosis (lecture 17) 13 Methods for the study of individual patients (lecture 18).

+ 5 practical lectures + 1 practical meeting

Bridging Courses

Metodologia della ricerca con elementi di statistica

Learning Achievements (Dublin Descriptors)

The students are expected to have acquired: (1) the key-concepts of hypothesis testing and statistical tests in the theoretical framework of the linear general model, (2)  the ability to recognize which statistical approach has to be used in different contests, (3) the ability to use knowledge and concepts for the description of the results of statistical analyses commonly run in the psychological sciences

Teaching Material

The teaching material prepared by the lecturer in addition to recommended textbooks (such as for instance slides, lecture notes, exercises, bibliography) and communications from the lecturer specific to the course can be found inside the Moodle platform › blended.uniurb.it

Supporting Activities

1) Book: Gallucci e Leone “Modelli statistici per le scienze sociali”Capitoli: 2, 3, 4, 5, 6, 8, 11, 12);  R-commander: http://cran.r-project.org/doc/contrib/Karp-Rcommander-intro.pdf 3) Materials for the section "Methods for the study of individual patients" (online). To promote practical learning it is recommended that the studentes bring their own laptop


Didactics, Attendance, Course Books and Assessment

Didactics

Theorethical and practical lectures

Attendance

Not mandatory

Course books

Gallucci e Leone “Modelli statistici per le scienze sociali

Assessment

Multiple choice assessment and written description of the results of a research problem

Additional Information for Non-Attending Students

Didactics

Theorethical and practical lectures

Attendance

Not mandatory

Course books

Gallucci e Leone “Modelli statistici per le scienze sociali

Assessment

Multiple choice assessment and written description of the results of a research problem

Notes

none

« back Last update: 25/10/2016

Condividi


Questo contenuto ha risposto alla tua domanda?


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Se sei vittima di violenza o stalking chiama il 1522

Il 1522 è un servizio pubblico promosso dalla Presidenza del Consiglio dei Ministri – Dipartimento per le Pari Opportunità. Il numero, gratuito è attivo 24 h su 24, accoglie con operatrici specializzate le richieste di aiuto e sostegno delle vittime di violenza e stalking.

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Performance della pagina

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2021 © Tutti i diritti sono riservati

Top