Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


ADVANCED BIOLOGICAL TECHNOLOGIES mutuato
TECNOLOGIE BIOLOGICHE AVANZATE

A.Y. Credits
2018/2019 6
Lecturer Email Office hours for students
Luca Galluzzi
Teaching in foreign languages
Course partially taught in a foreign language English
This course is taught partially in Italian and partially in a foreign language. Study materials can be provided in the foreign language and the final exam can be taken in the foreign language.

Assigned to the Degree Course

Sanitary Nutritional and Environmental Biology (LM-6)
Curriculum: BIOTECNOLOGIE MOLECOLARI
Giorno Orario Aula
Giorno Orario Aula

Learning Objectives

The aim of the course is to provide notions of advanced biological technologies for the amplification and characterization of nucleic acids, and for the study of the genomes and transcriptomes, as well as notions concerning the investigation of chromatin, non-coding RNAs and for genome editing. Notions of bioinformatics for the genome analysis and the search of biological databases will also be acquired.

Program

1.    Basics of bioinformatics 
1.1.    Primary and derivative database; genome browsers; gene ontology database
1.2.    Main tools for DNA/protein sequence analysis and for searching biological information in public databases (e.g. BLAST)
2.    Nucleic acid amplification 
2.1.    PCR-based techniques (asymmetric PCR)
2.2.    Non PCR-based techniques (LCR, NASBA, SDA, LAMP)
2.3.    Techniques for Whole Genome Amplification and Whole Transcriptome Amplification  
3.    Real-time PCR: principles and chemistries 
3.1.    Absolute quantification of nucleic acids:  applications and data analysis
3.2.    Probe-based methods for genotyping 
3.3.    Melting analysis and High Resolution Melt (HRM) analysis: principles and examples of applications 
4.    Digital PCR e droplet digital PCR
4.1.    principles and applications for cfDNA analysis and prenatal diagnosis  
5.    DNA Microarrays 
5.1.    manufacturing principles
5.2.    planar microarrays and bead microarray; 
5.3.    applications in transcriptome analysis and in molecular diagnostics (SNP arrays, CGH arrays, arrays for the detection and characterization of microorganisms).
6.    Next-generation sequencing 
6.1.    Technologies based on pyrosequencing 
6.2.    Technologies based on reversible terminators 
6.3.    Technologies based on oligonucleotide ligation detection (SOLiD) 
6.4.    Technologies based on hydrogen ion detection (ion torrent)
6.5.    Third generation sequencing (PacBio sequencing).
7.    Metagenomics: applications for the analysis of microbial communities 
8.    Chip-on-chip and Chip-seq: methods and applications to study transcription factors and chromatin organization 
9.    RNA interference
9.1.    Techniques to study microRNAs 
9.2.    miRNA-mediated gene silencing
10.    Genome engineering through CRISPR/Cas-based methods 
11.    Protein arrays 
11.1.    function arrays
11.2.    detection arrays
11.3.    reverse phase arrays
 

Learning Achievements (Dublin Descriptors)

Knowledge and ability of comprehension. The student must demonstrate the possession of a solid knowledge of basic molecular biology and knowledge of the fundamentals of molecular technologies covered during the course.

Ability to apply knowledge and comprehension The student must also show to be able to apply the acquired knowledge in a research and/or clinical diagnostics or environmental context.

Autonomy of judgement The student will be able to critically evaluate the most appropriate biological technology to gain useful information in different research or diagnostics contexts. 

Communication skills The student must be able to describe the biological technologies listed in the course program using adequate scientific language and referring to concrete examples.

Learning skill. The student will be able to build his own learning path, using learning materials fournished by the teacher or autonomously acquired.

Teaching Material

The teaching material prepared by the lecturer in addition to recommended textbooks (such as for instance slides, lecture notes, exercises, bibliography) and communications from the lecturer specific to the course can be found inside the Moodle platform › blended.uniurb.it

Supporting Activities

Search for biological information in public databases. 


Didactics, Attendance, Course Books and Assessment

Didactics

Lectures

Attendance

None

Course books
  • Molecular Diagnostics, 2nd Edition 2009 Patrinos, Ansorge. Elsevier academic press. 
  • ppt files and scientific reviews published on international journals will be made available online (moodel platform)
Assessment

Oral examination. During the examination the student must demonstrate: that it has acquired full mastery of the concepts covered during the course; to be able to make logical connections between the techniques learned and their applications; to be able to illustrate the key concepts in a limited time and using appropriate scientific language.

Additional Information for Non-Attending Students

Course books
  • Molecular Diagnostics, 2nd Edition 2009 Patrinos, Ansorge. Elsevier academic press. 
  • ppt files and scientific reviews published on international journals will be made available online (moodel platform)
Assessment

Oral examination. During the examination the student must demonstrate: that it has acquired full mastery of the concepts covered during the course; to be able to make logical connections between the techniques learned and their applications; to be able to illustrate the key concepts in a limited time and using appropriate scientific language.

« back Last update: 18/07/18

Condividi


Questo contenuto ha risposto alla tua domanda?


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Il tuo 5x1000 per sostenere le attività di ricerca

L'Università di Urbino destina tutte le risorse che deriveranno da questa iniziativa alla ricerca scientifica ed al sostegno di giovani ricercatori.

Numero Verde

800 46 24 46

Richiesta informazioni

informazioni@uniurb.it

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Performance della pagina

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2019 © Tutti i diritti sono riservati

Top