Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


SOCIAL MEDIA ANALYSIS
SOCIAL MEDIA ANALYSIS


A.A. CFU
2017/2018 6
Docente Mail Ricevimento studenti
Fabio Giglietto LUN 11-13
Didattica in lingua straniera
Insegnamento con materiali opzionali in lingua straniera Inglese
La didattica è svolta interamente in lingua italiana. I materiali di studio e l'esame possono essere in lingua straniera.

Assegnato ai Corsi di Studio

Informazione, Media, Pubblicità (L-20)
Curriculum: PERCORSO COMUNE

Obiettivi Formativi

Nel corso degli ultimi anni, i media sociali come Facebook e Twitter si sono affermati fino a diventare una infrastruttura di comunicazione essenziale per la società e per l'individuo. Una parte crescente delle nostre conversazioni quotidiane passano attraverso la mediazione di queste piattaforme. Questa mediazione rende conversazioni un tempo effimere, permanenti, ricercabili scalabili e replicabili. A partire da una riflessione sull'impatto sociale di queste quattro proprietà, il corso concentra l'attenzione sulle conseguenze di questi cambiamenti per lo studio della società e della comunicazione. Durante il corso gli studenti acquisiranno conoscenze su come reperire, archiviare e analizzare le conversazioni che hanno luogo su Twitter e Facebook.

Nello specifico il corso di quest'anno sarà dedicato all'analisi delle conversazioni che nascono intorno ai contenuti informativi e disinformativi.

Programma

  • Lezione 1

    • Presentazione del corso
    • Dal Web 2.0 ai Social Media
  • Lezione 2

    • Misinformation, Disinformation e tipologie di disinformazione in rete

  • Lezione 3

    • Il ruolo dei media mainstream

  • Lezione 4

    • Introduzione alle API di Twitter e Facebook

    • Facebook Graph API ExplorerURL

    • Twitter API Console ToolsURL

    • The Open Laboratory: Limits and Possibilities of Using Facebook, Twitter, and YouTube as a Research Data SourceFile

  • Lezione 5

    • Limiti e opportunità: formati JSON e CSV, GNIP e DiscoverText

    • DiscoverTextURL

  • Lezione 6

    • Social Network Analysis di Gruppi e Facebook con Netvizz e Gephi

  • Lezione 7

    • Introduzione a R

  • Lezione 8

    • Introduzione a R

  • Lezione 9

    • Introduzione all’analisi del contenuto dei social media

  • Lezione 10

    • Formazione dei gruppi, scelta dei temi ed inizio dell’attività

  • Lezione 11

    • Workgroup

  • Lezione 12

    • Workgroup

  • Lezione 13

    • Workgroup

  • Lezione 13

    • Workgroup

  • Lezione 14

    • Workgroup

  • Lezione 15

    • Workgroup

  • Lezione 16

    • Preparazione della relazione finale

  • Lezione 17

    • Preparazione della relazione finale

  • Lezione 18

    • Preparazione della relazione finale

    • Consegna Relazione

Eventuali Propedeuticità

Nessuna propedeuticità, ma gli studenti che hanno già affrontato i corsi di Statistica Sociale e Sociologia dei new media e Internet Studies ed il Laboratorio di Social Media riusciranno a seguire con più agio le tematiche proposte da questo corso.

Risultati di Apprendimento (Descrittori di Dublino)

1. Conoscenze e capacità di comprensione: delle opportunità e le sfide che i social media pongono alla ricerca sociale, conoscere le API di Twitter e Facebook, conoscere piattaforme e tecniche per l'acquisizione dati da Twitter e Facebook, conoscere le tecniche di analisi del contenuto

1.1. Gli studenti conseguono tali conoscenze attraverso momenti di esercitazione hands-on individuali e di gruppo in classe. 

Materiale Didattico e Attività di Supporto

Sarà disponibile nella piattaforma di Blended Learning a http://blended.uniurb.it.



Il materiale didattico e le comunicazioni specifiche del docente sono reperibili, assieme ad altre attività di supporto, all'interno della piattaforma Moodle › blended.uniurb.it

Modalità Didattiche, Obblighi, Testi di Studio e Modalità di Accertamento

Modalità Didattiche

3 appuntamenti settimanali di 2 ore ciascuno. Lezioni frontali, discussione in classe e project work

Obblighi

Frequentare almeno 3/4 delle lezione e prendere parte all'attività di project work

Testi di Studio

Bennato, D. (2015). Il computer come macroscopio: Big data e approccio computazionale per comprendere i cambiamenti sociali e culturali. Milano: Franco Angeli.

Marwick, A., & Lewis, R. (2017). Media Manipulation and Disinformation Online. Data & Society Research Institute (https://datasociety.net/pubs/oh/DataAndSociety_MediaManipulationAndDisinformationOnline.pdf)

Modalità di
Accertamento

La verifica dell’apprendimento avverrà tramite colloquio orale individuale basato sulla discussione dell'elaborato consegnato dai gruppi a fine corso, volto a valutare sia l'apprendimento dei contenuti da parte dello studente sia la sua capacità di rielaborazione e di argomentazione. Daranno luogo a valutazioni di eccellenza: il possesso da parte dello studente di buone capacità critiche e di approfondimento; il saper collegare tra loro le principali tematiche affrontate nel corso; l’uso di un linguaggio appropriato rispetto alla specificità della disciplina. Daranno luogo a valutazioni discrete: il possesso da parte dello studente di una conoscenza mnemonica dei contenuti; una relativa capacità critica e di collegamento tra i temi trattati: l’uso di un linguaggio appropriato.Daranno luogo a valutazioni sufficienti: il raggiungimento di un bagaglio di conoscenze minimale sui temi trattati da parte dello studente, pur in presenza di alcune lacune formative; l’uso di un linguaggio non appropriato. Daranno luogo a valutazioni negative: difficoltà di orientamento dello studente rispetto ai temi affrontati nei testi d'esame; lacune formative; l’uso di un linguaggio non appropriato”. Nello specifico la valutazione finale è così strutturata: Project work (60%), colloquio orale (30%) e partecipazione in classe (10%). L'elaborato di gruppo sarà soggetto a verifica con il sistema anti-plagio in uso all'ateneo. Casi di plagio determineranno una valutazione negativa.
Alla valutazione della partecipazione in classe concorrerà il numero di lezioni frequentate sul totale, la partecipazione in aula e nello spazio blended, il contributo all'attività di gruppo e l’originalità dei contributi proposti.

Informazioni Aggiuntive per Studenti Non Frequentanti

Modalità Didattiche

-

Obblighi

-

Testi di Studio

Bennato, D. (2015). Il computer come macroscopio: Big data e approccio computazionale per comprendere i cambiamenti sociali e culturali. Milano: FrancoAngeli.

Quattrociocchi, W., & Vicini, A. (2016). Misinformation: Guida alla societa? dell'informazione e della credulita?. Milano: FrancoAngeli.

Marwick, A., & Lewis, R. (2017). Media Manipulation and Disinformation Online. Data & Society Research Institute (https://datasociety.net/pubs/oh/DataAndSociety_MediaManipulationAndDisinformationOnline.pdf)

Modalità di
Accertamento

Esame orale

« torna indietro Ultimo aggiornamento: 19/07/17


Condividi


Questo contenuto ha risposto alla tua domanda?


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

numero verde

800 46 24 46

Richiesta informazioni

informazioni@uniurb.it

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Performance della pagina

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2017 © Tutti i diritti sono riservati

Top