Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


METODI QUANTITATIVI PER IL MANAGEMENT mutuato
QUANTITATIVE METHODS FOR MANAGEMENT

A.A. CFU
2018/2019 8
Docente Email Ricevimento studenti
Luciano Stefanini

Assegnato al Corso di Studio

Marketing e Comunicazione per le Aziende (LM-77)
Curriculum: PERCORSO COMUNE
Giorno Orario Aula
Giorno Orario Aula

Obiettivi Formativi

Il corso ha l'obiettivo di introdurre e sperimentare alcuni degli strumenti matematici largamente utilizzati nella modellizzazione e nei sistemi di supporto alle decisioni, con particolare attenzione alle tecniche dell'ottimizzazione e della business intelligence.

Programma

Il corso sviluppa una prima parte istituzionale sui contenuti classici della ricerca operativa ed una seconda parte, con modalità seminariale in aula, su argomenti tematici.
Per tenere conto della eventuale impossibilità di frequenza da parte degli studenti, il programma è distinto tra studenti non frequentanti e studenti frequentanti regolarmente le lezioni ed i seminari.

Programma per gli studenti non frequentanti

Parte A. Metodi e Applicazioni dell' Ottimizzazione Lineare
A.1) Ottimizzazione Lineare
- Applicazioni tipiche dell'ottimizzazione lineare
- Formulazioni di problemi di ottimizzazione lineare
A.2) Geometria dell'ottimizzazione lineare
- Rappresentazioni in due dimensionii dei problemi di ottimizzazione lineare (vincoli, obiettivi, feasible set)
- Soluzioni ottimali e condizioni di Kuhn-Tucker
- Poliedri, vertici e soluzioni di base
- Cenno sull'algoritmo del simplesso
A.3) Dualità e analisi di sensitività nell'Ottimizzazione lineare
- Esempi di problemi duali e teoremi di dualità
- Analisi di sensitività rispetto alla funzione obiettivo ed ai vincoli
- Significato delle variabili duali e prezzi ombra

Parte B. Ottimizzazione intera e sui grafi
B.1) Ottimizzazione intera
- Knapsack e Capital budgeting
- Assegnamento e trasporto
- Metodo dei piani di taglio (Gomory)
- Alberi di ricerca e Algoritmi di Branch and Bound
B.2) Grafi e Ottimizzazione su grafi
- Definizioni e proprietà dei grafi orientati e non orientati
- Alberi di supporto (spanning) a costo minimo
- Problemi di cammino minimo
- Flussi in rete semplici e con guadagni (gain) sugli archi
- Altri problemi su grafo (TSP, VRP)
B.3) Ottimizzazione di Progetti
- Rappresentazione tramite grafi orientati
- Attività sui nodi e/o sugli archi
- Ricerca e Analisi del Cammino critico
- Modello probabilistico e PERT
- Bilanciamento Tempi/Costi

Parte C. Modelli Matematici e sistemi per le decisioni
C.1) Componenti del processo decisionale
- Business Intelligence
- Sistemi di supporto alle decisioni
- Cenno sul Data Warehousing e Data Mining
C.2) Modelli e metodi matematici
- Modelli matematici per le decisioni
- Preparazione ed Esplorazione dei dati
- Classificazione e Clustering
C.3) Applicazioni
- Modelli per la logistica e la produzione
- Data Envelopment Analysis

Programma per gli studenti frequentanti

Parte A. Elementi dell'uso di MATLAB e delle sue principali strutture di programmazione
- Illustrazione di MATLAB e suo utilizzo dalla command window
- Operazioni con array e matrici
- Principali strutture di programmazione
- Function in MATLAB e scrittura di files .m
- Esempi di funzioni interne a MATLAB

Parte B. Metodi e Applicazioni dell' Ottimizzazione Lineare
B.1) Ottimizzazione Lineare
- Applicazioni tipiche dell'ottimizzazione lineare
- Formulazioni di problemi di ottimizzazione lineare
- Rappresentazioni in due dimensionii dei problemi di ottimizzazione lineare (vincoli, obiettivi, feasible set)
- Soluzioni ottimali e condizioni di Kuhn-Tucker
- Poliedri, vertici e soluzioni di base
- Cenno sull'algoritmo del simplesso
B.2) Dualità e analisi di sensitività nell'Ottimizzazione lineare
- Esempi di problemi duali e teoremi di dualità
- Analisi di sensitività rispetto alla funzione obiettivo ed ai vincoli
- Significato delle variabili duali e prezzi ombra
B.3) Funzioni MATLAB per l'ottimizzazione lineare

Parte C. Ottimizzazione intera e sui grafi
C.1) Ottimizzazione intera
- Knapsack e Capital budgeting
- Assegnamento e trasporto
- Metodo dei piani di taglio (Gomory)
- Alberi di ricerca e Algoritmi di Branch and Bound
C.2) Grafi e Ottimizzazione su grafi
- Definizioni e proprietà dei grafi orientati e non orientati
- Alberi di supporto (spanning) a costo minimo
- Problemi di cammino minimo
- Flussi in rete semplici e con guadagni (gain) sugli archi
- Altri problemi su grafo (TSP, VRP)

Parte D. Parte Seminariale
Ogni studente dovrà partecipare ad (almeno) due dei seguenti seminari, a propria scelta.
D.1) Seminario sull'Ottimizzazione di Progetti
- Rappresentazione tramite grafi orientati
- Attività sui nodi e/o sugli archi
- Ricerca e Analisi del Cammino critico
- Modello probabilistico e PERT
- Bilanciamento Tempi/Costi
D.2) Seminario su Classificazione e Clustering
- Classificazione classica
- Classificazione "fuzzy"
D.3) Seminario su Modelli per la logistica e la supply chain
- Modelli matematici per la logistica e il distribution management
- Analisi della agilità di una rete logistica
D.4) Seminario su Modelli di Business Intelligence e Soft Computing
- Insiemi e numeri fuzzy
- Logica Fuzzy e Modelli di soft computing

Il materiale relativo alle lezioni ed ai seminari, sarà distribuito dal docente direttamente agli studenti frequentanti.

Materiale Didattico

Il materiale didattico predisposto dal docente in aggiunta ai testi consigliati (come ad esempio diapositive, dispense, esercizi, bibliografia) e le comunicazioni del docente specifiche per l'insegnamento sono reperibili all'interno della piattaforma Moodle › blended.uniurb.it

Modalità Didattiche, Obblighi, Testi di Studio e Modalità di Accertamento

Modalità didattiche

La parte istituzionale è svolta tramite lezioni frontali, in aula.
La parte seminariale è svolta in aula, con lavoro individuale o in piccoli gruppi, con la guida del docente.

Testi di studio

1. Carlo Vercellis, "Ottimizzazione: teoria, metodi applicazioni", McGraw Hill, 2008. Capitoli 1, 2, 3, 5, 6, 8, 9, 10.
2. Carlo Vercellis, "Business Intelligence: modelli matematici e sistemi per le decisioni", McGraw Hill, 2006.
Capitoli 1, 2, 3 (lettura), 4, 5 (lettura), 6, 7, 10 (fino a 10.3 incluso), 12 (lettura), 14, 15.

Modalità di
accertamento

E' richiesta l'acquisizione della terminologia e del formalismo matematico essenziali, come contenuti nei manuali suggeriti per lo studio.

Informazioni Aggiuntive per Studenti Non Frequentanti

Testi di studio

1. Carlo Vercellis, "Ottimizzazione: teoria, metodi applicazioni", McGraw Hill, 2008. Capitoli 1, 2, 3, 5, 6, 8, 9, 10.
2. Carlo Vercellis, "Business Intelligence: modelli matematici e sistemi per le decisioni", McGraw Hill, 2006.
Capitoli 1, 2, 3 (lettura), 4, 5 (lettura), 6, 7, 10 (fino a 10.3 incluso), 12 (lettura), 14, 15.

Modalità di
accertamento

Consiste in una interrogazione/colloquio sugli argomenti del programma.
E' richiesta l'acquisizione della terminologia e del formalismo matematico essenziali, come contenuti nei manuali suggeriti per lo studio.

« torna indietro Ultimo aggiornamento: 13/09/18


Condividi


Questo contenuto ha risposto alla tua domanda?


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Il tuo 5x1000 per sostenere le attività di ricerca

L'Università di Urbino destina tutte le risorse che deriveranno da questa iniziativa alla ricerca scientifica ed al sostegno di giovani ricercatori.

Numero Verde

800 46 24 46

Richiesta informazioni

informazioni@uniurb.it

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Performance della pagina

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2019 © Tutti i diritti sono riservati

Top