Università degli Studi di Urbino Carlo Bo / Portale Web di Ateneo


PROBABILITà E STATISTICA MATEMATICA

A.A. CFU
2007/2008 6
Docente Email Ricevimento studentesse e studenti
Margherita Carletti giovedì 09:00-11:00

Assegnato al Corso di Studio

Giorno Orario Aula

Obiettivi Formativi

Scopo del Corso è di fornire le nozioni di base del calcolo delle probabilità, con particolare riferimento a teoria della probabilità, variabili aleatorie e funzioni di probabilità, nonché i principali concetti della statistica inferenziale, con particolare riferimento a teoria della stima, test di ipotesi e regressione lineare.

Programma

01. Probabilità:
01.01 Definizione assiomatica di probabilità secondo Kolmogorov.
01.02 Probabilità condizionata. Indipendenza stocastica.
01.03 Teoremi sulla probabilità: della somma, del prodotto, delle probabilità totali. Teorema di Bayes.

02. Variabili aleatorie (v.a.) unidimensionali:
02.01 Generalità sulle v.a. unidimensionali.
02.02 Funzioni di ripartizione.
02.03 V.a. discrete e assoltamente continue. Distribuzioni di probabilità e funzioni di densità.
02.04 Indici di posizione: valore atteso e momenti, moda e mediana di una v.a.
02.05 Indici di dispersione: varianza, deviazione standard, scarto semplice assoluto.
02.06 Disuguaglianza di Markov e disuguaglianza di Chebyshev.
02.07 Funzioni caratteristiche.
02.08 Funzioni generatrici dei momenti.

03. Distribuzioni e densità di probabilità notevoli:
03.01 V.a. discrete: distribuzione di Bernoulli, binomiale, di Poisson, geometrica.
03.02 V.a. assolutamente continue: densità uniforme, esponenziale, normale.

04. V.a. bidimensionali:
04.01 Generalità sulle v.a. bidimensionali.
04.02 Funzioni di ripartizione.
04.03 V.a discrete: funzioni di probabilità congiunte, marginali e condizionate.
04.04 V.a. assolutamente continue: funzioni di densità congiunte, marginali e condizionate.
04.05 Indipendenza distributiva.
04.06 Valori attesi e momenti.
04.07 Covarianza e coefficiente di correlazione.

05. Convergenza e approssimazione:
05.01 Convergenza in distribuzione e convergenza in probabilità.
05.02 Teorema centrale del limite.

06. Campionamento e distribuzioni campionarie:
06.01 Inferenza deduttiva e induttiva. Inferenza induttiva diretta e inversa.
06.02 Popolazione e campione.
06.03 Distribuzione del campione.
06.04 Funzione di verosimiglianza.
06.05 Distribuzione campionaria della media.

07. Stima puntuale di parametri:
07.01 Statistiche e stimatori.
07.02 Stimatori corretti, distorsione.
07.03 MSE di uno stimatore.
07.04 Stimatori asintoticamente corretti, consistenti, consistenti in media quadratica, efficienti.
07.05 Metodo della massima verosimiglianza per la determinazione di stimatori puntuali.

08. Stima per intervalli:
08.01 Metodo generale per la costruzione di un intervallo di confidenza per un parametro della popolazione.
08.02 Intervalli di confidenza per la media (popolazioni normali).
08.03 Intervalli di confidenza per la differenza di due medie (popolazioni normali).
08.04 Intervalli di confidenza per la frequenza (popolazioni bernoulliane, grandi campioni).

09. Verifica di ipotesi:
09.01 Generalità sui test di ipotesi: ipotesi semplici e ipotesi composte, tipo di errore e costo dell'errore, funzione di potenza.
09.02 Test più potente di ampiezza alfa.
09.03 Test di ipotesi sulla media (popolazioni normali).
09.04 Test di ipotesi sulla differenza di due medie (popolazioni normali).
09.05 Test di ipotesi su una frequenza (popolazioni bernoulliane, grandi campioni).
09.06 Test di ipotesi sulla differenza di due frequenze (popolazioni bernoulliane, grandi campioni).

10. Regressione lineare semplice:
10.01 La retta dei minimi quadrati e il modello di regressione lineare.

Modalità Didattiche, Obblighi, Testi di Studio e Modalità di Accertamento

Modalità didattiche

Lezioni frontali.

Obblighi

Nessuno.

Testi di studio

Baldi, "Calcolo delle Probabilità e Statistica", McGraw-Hill, 1998.

Baldi, Giuliano, Ladelli, "Laboratorio di Statistica e Probabilità - Problemi Svolti", McGraw-Hill, 1995.

Modalità di
accertamento

Prova scritta e prova orale.

Disabilità e DSA

Le studentesse e gli studenti che hanno registrato la certificazione di disabilità o la certificazione di DSA presso l'Ufficio Inclusione e diritto allo studio, possono chiedere di utilizzare le mappe concettuali (per parole chiave) durante la prova di esame.

A tal fine, è necessario inviare le mappe, due settimane prima dell’appello di esame, alla o al docente del corso, che ne verificherà la coerenza con le indicazioni delle linee guida di ateneo e potrà chiederne la modifica.

« torna indietro Ultimo aggiornamento: 29/08/2007


Il tuo feedback è importante

Raccontaci la tua esperienza e aiutaci a migliorare questa pagina.

Il tuo 5x1000 per sostenere le attività di ricerca

L'Università di Urbino destina tutte le risorse che deriveranno da questa iniziativa alla ricerca scientifica ed al sostegno di giovani ricercatori.

15 22

Se sei vittima di violenza o stalking chiama il 1522, scarica l'app o chatta su www.1522.eu

Il numero, gratuito è attivo 24 h su 24, accoglie con operatrici specializzate le richieste di aiuto e sostegno delle vittime di violenza e stalking.

Posta elettronica certificata

amministrazione@uniurb.legalmail.it

Social

Università degli Studi di Urbino Carlo Bo
Via Aurelio Saffi, 2 – 61029 Urbino PU – IT
Partita IVA 00448830414 – Codice Fiscale 82002850418
2024 © Tutti i diritti sono riservati

Top